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Executive Summary   

Transit ridership may be sensitive to fares, travel times, waiting times, and access times, among 

other factors. Thus, elastic demands are considered in formulations for maximizing the system 

welfare for conventional and flexible bus services. Two constrained nonlinear mixed integer 

optimization problems are solved with a genetic algorithm: 1) welfare maximization (for 

conventional and flexible services) with service capacity constraints and 2) welfare 

maximizations with the service capacity and subsidy constraints. Numerical examples find that 

with the input parameters assumed here, conventional services produce greater system welfare 

(consumer surplus + producer surplus) than flexible services. Numerical analysis also finds that 

if the operating cost is fully subsidized, flexible services generate more actual trips than 

conventional services. For comparing actual trips between the zero subsidy and the fully 

subsidized cases, the actual trips for conventional services is increased 10.5% while the actual 

trips for flexible services is increased 15.6%.  

Key Words: Social Welfare, Consumer Surplus, Producer Surplus, Conventional Bus, Flexible 

Bus, Genetic Algorithm, Constrained Optimization 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

In public transportation systems, feeder services serve a  very important purpose for 

transit users because they start and end their journeys with feeder services. Thus trips may be 

concentrated into sufficient densities for economical use of mass transportation. Feeder services 

typically consist of two types: conventional services, which are also known as fixed-route bus 

services, and flexible services, which are often called demand-responsive services. Bus services 

with both conventional and flexible services have been studied extensively. Kocur and 

Hendrickson (1982) designed conventional services connecting the terminal and a local region. 

Since then, various studies analyzed conventional services (Chang, 1990; Chang and Schonfeld, 

1991a & 1991b & 1991c & 1993; Lee et al., 1995; Kim and Schonfeld, 2012 & 2013; Diana et el. 

2009). Thus, Chang and Schonfeld (1991a) compared conventional and flexible bus services for 

serving a local region. They provided closed form solutions with an analytic approach. Chang 

and Schonfeld (1993) analyzed the social system welfare for conventional services. Their 

solutions were found by analytic optimization (with approximations), but the proposed method 

may not be feasible for a multiple region analysis. Lee et al. (1995) considered mixed bus fleets 

for conventional services and found that mixed fleets conventional services are beneficial for 

single fleet conventional services when the demand fluctuates over regions.  

Flexible feeder services were also actively explored since 1970’s. Stein (1978) estimated 

the optimal tour distance for flexible services. Daganzo (1984) compared demand responsive 

services for Rectilinear and Euclidean distances. Various research questions for flexible services 

were addressed and explored (Chang and Schonfeld, 1991a & 1993b; Chandra and Quadrifoglio, 

2013a & 2013b; Chandra et al., 2011; Diana et al., 2007; Li and Quadrifoglio, 2009 & 2011; 

Quadrifoglio and Dessouky, 2007; Quadrifoglio et al., 2007 & 2008; Shen and Quadrifoglio, 

2012; Horn, 2002; Luo and Schonfeld, 2011a & 2011b; Zhou et al., 2008). Luo and Schonfeld 

(2011a) proposed an online rejected-reinsertion heuristics for a dynamic dial-a-ride problem. Luo 

and Schonfeld (2011b) also developed metamodels for dial-a-ride services. Chandra and 

Quadrifoglio (2013a) explored demand responsive services for estimating the tour length with an 

analytic queuing model.  

Conventional services are generally favorable (with large bus sizes) at high demand 

densities. Conversely, flexible services are usually preferable when demand densities are low 

(Chang and Schonfeld, 1991a; Kim and Schonfeld, 2012 & 2013). Thus, if conventional and 



flexible services are jointly provided, it may be possible to provide more efficient feeder services 

than either conventional or flexible services. To address such bus transit integration problems, 

Chang and Schonfeld (1991c) consider a temporal integration of conventional and flexible 

services. Kim and Schonfeld (2012) propose a variable-type bus service, which operates 

conventional services with higher demand periods and change to flexible services to low demand 

periods. In Kim and Schonfeld (2012), flexible services re-optimize headways, fleet size, and 

service area with given vehicle size. Kim and Schonfeld (2013) consider conventional and 

flexible services as well as a mixture of bus fleets. Their results show that when demand varies 

over time and over regions, the joint provision of conventional services and flexible services a 

mix of large and small buses reduces total costs. Quadrifoglio and his colleagues integrate bus 

feeder services using fixed-route and demand responsive bus services (Aldaihani et al., 2004; 

Diana et al., 2009; Quadrifoglio and Li, 2009; Li and Quadrifoglio, 2010).  

Transit ridership may be sensitive to the elasticity of fares and other time factors such as 

in-vehicle times, waiting times and access times. However, most of research on feeder transit 

services mentioned above does not consider demand elasticity. A few studies explore demand 

elasticity in public transportation services, especially bus transit systems (Kocur and 

Hendrickson, 1982; Imam, 1998; Chang and Schonfeld, 1993; Zhou et al., 2008; Chien and 

Spasovic, 2002). When considering the demand elasticity, formulations typically become 

maximization problems, presumably because it makes little sense to minimize costs if demand is 

elastic (and may be driven to zero). Kocur and Hendrickson (1982) optimize transit decision 

variables, namely route spacing, headway, and fare, with demand elasticity. They assume a linear 

transit utility function rather than a logit form. Their justifications for the linear utility 

approximation are that it is analytically tractable, it is easily differentiated and manipulated, and 

it is convex within its upper and lower bounds. They consider wait time, walk time, in-vehicle 

time, fare, and auto time and cost in the demand model. They provide analytic closed form 

solutions, but this study is limited to a conventional bus service for one local region. Later, Imam 

(1998) extends Kocur and Hendrickson (1982)’s study by relaxing the linear demand function. 

Imam (1998) applies a log-additive demand function.  

Chang and Schonfeld (1993) consider time-dependent supply and demand characteristics 

for a transit welfare maximization problem. They use a linear demand function as in Kocur and 

Hendrickson (1982). Decision variables are route spacing, headways, and fare. Since this study 



considers multiple time periods, they optimize headways for multiple time periods. Their 

objective is to maximize consumer surplus and producer surplus. They solve this maximum 

welfare problem with alternative financial constraints, namely without any constraint, with a 

break-even constraint, and with subsidy. Their problem size extends to one local region and 

multiple periods. Solutions are obtained analytically with approximations. For the formulations 

with constraints, a Lagrange multipliers method is applied. The vehicle size is considered as an 

input, rather than a decision variable.  

 Zhou et al (2008) formulate welfare for conventional bus services and flexible bus 

services, but only for a system connecting a terminal to one local region in one period. They find 

solutions analytically because the formulation of a system that connects a terminal to one local 

region in one period is analytically tractable. Analyses of system welfare with larger problem 

sizes (i.e., multiple regions and multiple periods) for both conventional and flexible services are 

desirable. They analyze tradeoffs between subsidies and welfare, but do not provide detailed 

enough methods to duplicate their results.  

 Chien and Spasovic (2002) study a grid bus transit system with an elastic demand pattern. 

They optimize route spacings, station spacings, headways, and fare with the objective of 

maximum total operator profit and social welfare. The elastic demand is subtracted from the 

potential demand as in Chang and Schonfeld (1993), and the optimal solutions are found 

analytically. This work is applicable to conventional bus services.  

 Tsai et al (2013) find headway and fare solutions for a Taiwan High Speed Rail (THSR) 

line, with a maximum welfare objective. They consider elastic demand for the study, and apply a 

GA to obtain solutions. They compare solutions from a GA and solutions from a SSM 

(Successive Substitution Method).  

 For the system welfare problems in bus transit systems, most of the literature covers 

conventional services. Most existing transit welfare problems are solved with analytic 

optimization. Analytic optimization can find solutions quickly with the possibility of the closed 

form solutions, but it is unable to solve more complex (e.g., multiple region analysis). For 

conventional services, the solved problem size encompasses a local region with multiple periods. 

For flexible services, the solved problem size encompasses a local region and one period. With 

numerical solutions it seems desirable to consider problems with multiple regions as well as 

multiple periods for both conventional and flexible services.   



In this paper, different service qualities and demand elasticity are considered in 

conventional and flexible service formulations. Total cost minimization is not a reasonable 

objective when the demand is elastic, since the demand can be driven toward zero in minimizing 

costs. Instead of minimizing total system costs, the objective in this paper is to maximize the 

social welfare, which is the sum of consumer surplus (i.e. net user benefit) and producer surplus 

(i.e. profit).  

A linear elastic demand function is applied for both conventional and flexible services. 

Using elastic demand functions, various decision variables, which are fares on conventional and 

flexible services, bus sizes, headways and fleet sizes for both service types, route spacings for 

conventional services, and service areas for flexible services, are optimized here. The 

optimization problems that are solved in this paper are suitable for the planning stage.  

 

2. System Specifications and Assumptions 

This section addresses assumptions for analyzing a general system (shown in Figure 1) 

with multiple local regions as well as multiple periods.  Assumptions from Kim and Schonfeld 

(2013) are still applicable, and additional assumptions (for the welfare analysis) are introduced in 

the following sections when they are required.  

 

 

 



 
Figure 1 Local Regions and Bus Operations 

 

Henceforth, superscripts k and i correspond to region and time period, respectively, while 

subscripts c and f represent conventional and flexible services, respectively. The definitions, 

units and default values of variables used in this paper are presented in Table 1.  

 
Table 1 Notation 

Variable Definition Baseline Value 
a hourly fixed cost coefficient for operating bus ($/bus hr) 30.0 
Ak service zone area(mile2)= LkWk/N′ - 
b hourly variable cost coefficient for bus operation ($/seat hr) 0.2 
d bus stop spacing (miles) 0.2 
𝐷𝐷𝑐𝑐𝑘𝑘𝑘𝑘 distance of one flexible bus tour in local region k and period i (miles) - 

𝐷𝐷𝑓𝑓𝑘𝑘 equivalent line haul distance for flexible bus on region k 
(=(Lk+Wk)/z+2Jk/y),  (miles) - 

𝐷𝐷𝑘𝑘 equivalent average bus round trip distance for conventional bus on region k (= 
2Jk/y+ Wk /z+2 Lk),(miles)  - 

𝑑𝑑𝑠𝑠𝑘𝑘𝑘𝑘  directional demand split factor 1.0 

𝐹𝐹𝑘𝑘𝑘𝑘 fleet size for region k and period i (buses) 
subscript corresponds to (c = conventional, f=flexible) - 

ℎ𝑐𝑐 , ℎ𝑐𝑐𝑘𝑘𝑘𝑘 headway for conventional bus; for region k and period i (hours/bus) - 
ℎ𝑓𝑓 , ℎ𝑓𝑓𝑘𝑘𝑘𝑘 headway for flexible bus; for region k period i (hours/bus) - 

 k ,i index (k: region, i : period) - 
Jk line haul distance of region k (miles) - 
𝑙𝑙𝑐𝑐 , 𝑙𝑙𝑓𝑓 load factor for conventional and flexible bus (passengers/seat) 1.0 

Lk, Wk length and width of local region k (miles) - 
𝑀𝑀𝑘𝑘 equivalent average trip distance for region k (=(Jk/yc+ Wk /2zc+ Lk /2)) - 
n number of passengers in one flexible bus tour - 

𝑁𝑁𝑐𝑐𝑘𝑘 ,𝑁𝑁𝑓𝑓𝑘𝑘 number of zones in local region for conventional and flexible bus - 
𝑄𝑄𝑘𝑘𝑘𝑘 actual demand density (trips/hr) - 
𝑞𝑞𝑘𝑘𝑘𝑘 potential demand density (trips/mile2/hr) - 
rk route spacing for conventional bus at region k (miles) - 
𝑅𝑅𝑐𝑐𝑘𝑘𝑘𝑘 round trip time of conventional bus for region k and period i (hours) - 
𝑅𝑅𝑓𝑓𝑘𝑘𝑘𝑘 round trip time of flexible bus for region k and period i (hours) - 

𝑆𝑆𝑐𝑐 ,𝑆𝑆𝑓𝑓  sizes for conventional and flexible bus (seats/bus) - 
𝑡𝑡𝑘𝑘𝑘𝑘 time duration for region k and period i - 
u average number of passengers per stop for flexible bus 1.2 
𝑉𝑉𝑐𝑐𝑖𝑖 local service speed fo/r conventional bus in period i (miles/hr) 30 
𝑉𝑉𝑓𝑓𝑖𝑖 local service speed for flexible bus in period i (miles/hr) 25 
𝑉𝑉𝑥𝑥 average passenger access speed (mile/hr) 2.5 

𝑣𝑣𝑣𝑣,𝑣𝑣𝑤𝑤, 𝑣𝑣𝑥𝑥 value of in-vehicle time, wait time and access time ($/passenger hr) 5, 12, 12 
𝑦𝑦 express speed/local speed ratio for conventional bus conventional bus = 1.8 



flexible  bus = 2.0 
Ø constant in the flexible bus tour equation (Daganzo, 1984) for flexible bus  1.15 
* superscript indicating optimal value; subscript: c = conventional, f=flexible - 

𝑌𝑌𝑐𝑐𝑘𝑘𝑘𝑘 ,𝑌𝑌𝑓𝑓𝑘𝑘𝑘𝑘  
total social welfare in region k and period i 
subscript: c = conventional, f=flexible - 

𝑃𝑃𝑐𝑐𝑘𝑘𝑘𝑘,𝑃𝑃𝑓𝑓𝑘𝑘𝑘𝑘 
producer surplus (revenue – cost) in region k and period i 
subscript: c = conventional, f=flexible - 

𝑅𝑅𝑐𝑐𝑘𝑘𝑘𝑘 ,𝑅𝑅𝑓𝑓𝑘𝑘𝑘𝑘 
revenue in region k and period i 
subscript: c = conventional, f=flexible - 

𝐶𝐶𝑐𝑐𝑘𝑘𝑘𝑘 ,𝐶𝐶𝑓𝑓𝑘𝑘𝑘𝑘  
operating cost in region k and period i 
subscript: c = conventional, f=flexible - 

𝑓𝑓𝑐𝑐 , 𝑓𝑓𝑓𝑓 fares on the system ;subscript: c = conventional, f=flexible - 

𝐺𝐺𝑐𝑐𝑘𝑘𝑘𝑘 ,𝐺𝐺𝑓𝑓𝑘𝑘𝑘𝑘  
consumer surplus in region k and period i 
subscript: c = conventional, f=flexible  

𝑒𝑒𝑣𝑣, 𝑒𝑒𝑤𝑤, 𝑒𝑒𝑥𝑥 , 𝑒𝑒𝑝𝑝 elasticity factors  0.35, 0.7, 0.7, 0.07 
𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝑘𝑘𝑘𝑘 , 
𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑘𝑘𝑘𝑘  

the total user benefit in region k and period i 
subscript: c = conventional, f=flexible  

𝑌𝑌𝑐𝑐 ,𝑌𝑌𝑓𝑓  the total welfare of system 
subscript: c = conventional, f=flexible  

𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘 the amount of subsidy for region k and period i  

 

2.1 Common assumptions for conventional and flexible services 

All service regions, 1… k, are rectangular, with lengths Lk and widths Wk. These regions 

may have different line haul distances Jk (miles, in region k) connecting a terminal and each 

region’s nearest corner.  

a) The demand is uniformly distributed over space within each region and over time within 

each specified period.  

b) The optimized bus sizes (Sc for conventional, Sf for flexible) are uniform throughout 

regions and time periods. 

c) The average waiting time of passengers is approximated as a constant fraction alpha of the 

headway (hc for conventional, hf for flexible). Alpha is usually assumed to be 0.5. 

d) Bus layover time is negligible.  

e) Within each local region k, the average speed (𝑉𝑉𝑐𝑐𝑖𝑖 for conventional bus, 𝑉𝑉𝑓𝑓𝑖𝑖 for flexible bus) 

includes stopping times. 

f) External costs are assumed to be negligible. 

 

2.2 Assumptions for conventional bus only (adopted from Kim and Schonfeld 2013, TR-B) 

a) The region k is divided into Nk parallel zones with a width rk=Wk/Nk for conventional bus, 

as shown in Figure 1. Local routes branch from the line haul route segment to run along the 

middle of each zone, at a route spacing rk=Wk/Nk. 



b) Qki trips/mile2/hour, entirely channeled to (or through) the single terminal, are uniformly 

distributed over the service area.  

c) In each round trip, as shown in Figure 1, buses travel from the terminal a line haul distance 

Jk at non-stop speed y𝑉𝑉𝑐𝑐𝑖𝑖 to a corner of the local regions, then travel an average of Wk/2 

miles at local non-stop speed z𝑉𝑉𝑐𝑐𝑖𝑖 from the corner to the assigned zone, then run a local 

route of length Lk at local speed 𝑉𝑉𝑐𝑐𝑖𝑖  along the central axis of the zone while stopping for 

passengers every d miles, and then reverse the above process in returning to the terminal. 

2.1.3 Assumptions for flexible bus only (adopted from Kim and Schonfeld 2013, TR-B) 

a) To simplify the flexible bus formulation, region k is divided into N’k equal zones, each 

having an optimizable zone area Ak=LkWk/N’k. The zones should be “fairly compact and 

fairly convex” (Stein, 1978). 

b) Buses travel from the terminal line haul distance Jk at non-stop speed y𝑉𝑉𝑓𝑓𝑖𝑖 and an average 

distance (Lk+Wk)/2 miles at local non-stop speed z𝑉𝑉𝑓𝑓𝑖𝑖  to the center of each zone. They 

collect (or distribute) passengers at their door steps through an efficiently routed tour of n 

stops and length 𝐷𝐷𝑐𝑐𝑘𝑘𝑘𝑘 at local speed𝑉𝑉𝑓𝑓𝑖𝑖. 𝐷𝐷𝑐𝑐𝑘𝑘𝑘𝑘 is approximated according to Stein (1978), in 

which  𝐷𝐷𝑐𝑐𝑘𝑘𝑘𝑘 = ∅√n𝐴𝐴𝑘𝑘 , and ∅ = 1.15 for the rectilinear space assumed here (Daganzo, 

1984). The values of n and 𝐷𝐷𝑐𝑐𝑘𝑘𝑘𝑘 are endogenously determined. To return to their starting 

point the buses retrace an average of (Lk+Wk)/2 miles at z𝑉𝑉𝑓𝑓𝑖𝑖 miles per hour and J k miles at 

y𝑉𝑉𝑓𝑓𝑖𝑖 miles per hour. 

c) Buses operate on schedules with preset headways and with flexible routing designed to 

minimize each tour distance 𝐷𝐷𝑐𝑐𝑘𝑘𝑘𝑘 .  

d) Tour departure headways are equal for all zones in each region and uniform within each 

period.  

3. Elastic Demand Functions and Operating Costs   

3.1. Conventional Bus Services  

In this section, the linear elastic demand function and the operating cost for conventional 

services are formulated. Chang and Schonfeld (1993) consider elastic demand for conventional 



bus services for one region and multiple periods. Their elastic demand function for conventional 

services is modified here to accommodate multiple regions as well as multiple periods.  

 

3.1.1. Elastic Demand Function for Conventional Bus Services  

The demand density may be sensitive to in-vehicle time, waiting time, access time, and 

the fare of the system. A linear demand function, 𝑄𝑄𝑐𝑐𝑘𝑘𝑘𝑘, in region k and period i is formulated as 

follows.  

𝑄𝑄𝑐𝑐𝑘𝑘𝑘𝑘 = 𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘 �1 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑐𝑐𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑥𝑥𝑧𝑧2
�𝑟𝑟𝑘𝑘+𝑑𝑑�
𝑉𝑉𝑥𝑥

− 𝑒𝑒𝑣𝑣
𝑀𝑀𝑐𝑐
𝑘𝑘

𝑉𝑉𝑐𝑐𝑖𝑖
− 𝑒𝑒𝑝𝑝𝑓𝑓𝑐𝑐�    (1) 

where 𝑧𝑧1 = usually 0.5 for uniform passenger arrivals, uniform bus arrivals  and sufficient bus 

capacity; 𝑧𝑧2 = usually 0.25 for rectilinear network. The elastic demand function in equation (1) 

can be rewritten as: 

𝑄𝑄𝑐𝑐𝑘𝑘𝑖𝑖 = 𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘 �𝐾𝐾𝑐𝑐𝑘𝑘 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑐𝑐𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑥𝑥𝑧𝑧2
𝑟𝑟𝑘𝑘

𝑉𝑉𝑥𝑥
− 𝑒𝑒𝑝𝑝𝑓𝑓𝑐𝑐�      (2) 

where 𝐾𝐾𝑐𝑐𝑘𝑘 = 1 − 𝑒𝑒𝑥𝑥𝑧𝑧2
𝑑𝑑
𝑉𝑉𝑥𝑥
− 𝑒𝑒𝑣𝑣

𝑀𝑀𝑐𝑐
𝑘𝑘

𝑉𝑉𝑐𝑐𝑖𝑖
 

 

3.1.2. Conventional Bus Operating Cost   

The conventional bus operating cost in region k and time period i is formulated below. 

Unit operating cost, 𝐵𝐵𝑐𝑐 , is assumed to be a function of vehicle size (i.e., 𝐵𝐵𝑐𝑐 = 𝑎𝑎 + 𝑏𝑏𝑆𝑆𝑐𝑐 ): 

𝐶𝐶𝑐𝑐𝑘𝑘𝑘𝑘 = 𝐵𝐵𝑐𝑐 𝑁𝑁𝑐𝑐𝑘𝑘
𝐷𝐷𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

𝑉𝑉𝑐𝑐𝑖𝑖ℎ𝑐𝑐𝑘𝑘𝑘𝑘
          (3) 

 

3.2. Flexible Bus Services   

3.2.1. Elastic Demand Function for Flexible Bus Services    

The demand density of flexible bus services is affected by the in-vehicle time, waiting 

time and fare. The access time factor is not considered for flexible services because we assume 

flexible services provide door-to-door services. Zhou et al (2008) considered a flexible service 

with elastic demand for only one time period and one region. Their solutions were obtainable 

with simple calculus since the problem was small. Here, the elastic demand function for flexible 

services is modified for multiple regions as well as multiple periods. The actual demand in 

region k and period i is formulated as: 



𝑄𝑄𝑓𝑓𝑘𝑘𝑘𝑘 = 𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘�1 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑓𝑓𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑣𝑣𝑀𝑀𝑓𝑓
𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑝𝑝𝑓𝑓𝑓𝑓�      (4) 

where 𝑧𝑧1  = usually 0.5 uniform passenger arrivals, uniform bus arrivals and sufficient bus 

capacity. Equation (4) can be rewritten as  

𝑄𝑄𝑓𝑓𝑘𝑘𝑘𝑘 = 𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘

⎩
⎪
⎨

⎪
⎧

𝐾𝐾𝑓𝑓𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑓𝑓𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑣𝑣
(∅𝐴𝐴𝑘𝑘�

𝑞𝑞𝑘𝑘𝑘𝑘ℎ𝑓𝑓
𝑘𝑘𝑘𝑘

𝑢𝑢 )

2𝑉𝑉𝑓𝑓
𝑖𝑖 − 𝑒𝑒𝑝𝑝𝑓𝑓𝑓𝑓

⎭
⎪
⎬

⎪
⎫

    (5) 

where 𝐾𝐾𝑓𝑓𝑘𝑘𝑘𝑘 = 1 − 𝑒𝑒𝑣𝑣 �
𝐿𝐿𝑘𝑘+𝑊𝑊𝑘𝑘

2𝑉𝑉𝑓𝑓
𝑖𝑖𝑦𝑦𝑓𝑓

+ 𝐽𝐽𝑘𝑘

𝑉𝑉𝑓𝑓
𝑖𝑖𝑦𝑦𝑓𝑓
�. 

 

3.2.2. Flexible Bus Operating Cost     

Flexible bus operating cost, 𝐶𝐶𝑓𝑓𝑘𝑘𝑘𝑘 , is formulated by multiplying unit bus operating cost, the 

number of zones in region k, and round travel time:  

𝐶𝐶𝑓𝑓𝑘𝑘𝑘𝑘 = 𝐵𝐵𝑓𝑓 𝑁𝑁𝑓𝑓𝑘𝑘
(𝐷𝐷𝑓𝑓

𝑘𝑘+𝐷𝐷𝑐𝑐𝑘𝑘𝑘𝑘)𝑡𝑡𝑘𝑘𝑘𝑘

𝑉𝑉𝑓𝑓
𝑖𝑖ℎ𝑓𝑓
𝑘𝑘𝑘𝑘          (6) 

𝐷𝐷𝑐𝑐𝑘𝑘𝑘𝑘 is the approximated flexible bus tour distance according to Stein (1978), in which 

 𝐷𝐷𝑐𝑐𝑘𝑘𝑘𝑘 = ∅√n𝐴𝐴𝑘𝑘 , and ∅=1.15 for the rectilinear space assumed here (Daganzo, 1984). The service 

area, 𝐴𝐴𝑘𝑘 ,  of flexible bus in region k is equal to 𝐿𝐿
𝑘𝑘𝑊𝑊𝑘𝑘

𝑁𝑁𝑓𝑓
𝑘𝑘 . Thus, by substituting average tour distance 

𝐷𝐷𝑐𝑐𝑘𝑘𝑘𝑘 into equation (6), the flexible bus operating cost in region k and time period i is estimated as: 

𝐶𝐶𝑓𝑓𝑘𝑘𝑘𝑘 ≈ 𝐵𝐵𝑓𝑓 𝑁𝑁𝑓𝑓𝑘𝑘
(𝐷𝐷𝑓𝑓

𝑘𝑘+∅�n𝐴𝐴𝑘𝑘)𝑡𝑡𝑘𝑘𝑘𝑘

𝑉𝑉𝑓𝑓
𝑖𝑖ℎ𝑓𝑓
𝑘𝑘𝑘𝑘 =

𝐵𝐵𝑓𝑓 𝑁𝑁𝑓𝑓
𝑘𝑘𝐷𝐷𝑓𝑓

𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

𝑉𝑉𝑓𝑓
𝑖𝑖ℎ𝑓𝑓
𝑘𝑘𝑘𝑘 +

∅𝐵𝐵𝑓𝑓 𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘�𝑞𝑞𝑘𝑘𝑘𝑘ℎ𝑓𝑓
𝑘𝑘𝑘𝑘 𝑢𝑢⁄

𝑉𝑉𝑓𝑓
𝑖𝑖ℎ𝑓𝑓
𝑘𝑘𝑘𝑘    (7) 

 

4. Welfare Maximization without Financial Constraints  

For public transit services and in general, the social welfare is the sum of the consumer 

surplus and the producer surplus. In this section social welfare functions are formulated for both 

conventional and flexible bus services.  

 

4.1. Welfare Formulation for Conventional Services  



The welfare of conventional bus services, 𝑌𝑌𝑐𝑐𝑘𝑘𝑘𝑘 , in region k and period i is the sum of the 

producer surplus, 𝑃𝑃𝑐𝑐𝑘𝑘𝑘𝑘 and the consumer surplus, 𝐺𝐺𝑐𝑐𝑘𝑘𝑘𝑘: 

𝑌𝑌𝑐𝑐𝑘𝑘𝑘𝑘 = 𝑃𝑃𝑐𝑐𝑘𝑘𝑘𝑘 + 𝐺𝐺𝑐𝑐𝑘𝑘𝑘𝑘           (8) 

The producer surplus 𝑃𝑃𝑐𝑐𝑘𝑘𝑘𝑘 is the total revenue 𝑅𝑅𝑐𝑐𝑘𝑘𝑘𝑘 minus the operating cost 𝐶𝐶𝑐𝑐𝑘𝑘𝑘𝑘  of the 

conventional bus service:  

𝑃𝑃𝑐𝑐𝑘𝑘𝑘𝑘 = 𝑅𝑅𝑐𝑐𝑘𝑘𝑘𝑘 − 𝐶𝐶𝑐𝑐𝑘𝑘𝑘𝑘          (9) 

The total revenue 𝑅𝑅𝑐𝑐𝑘𝑘𝑘𝑘 in region k and period i is the fare multiplied by the total demand density 

in region k and time period i:  

𝑅𝑅𝑐𝑐𝑘𝑘𝑘𝑘 = 𝑓𝑓𝑐𝑐𝑄𝑄𝑐𝑐𝑘𝑘𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘 = 𝑓𝑓𝑐𝑐𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘 �𝐾𝐾𝑐𝑐𝑘𝑘 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑐𝑐𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑥𝑥𝑧𝑧2
𝑟𝑟𝑘𝑘

𝑉𝑉𝑥𝑥
− 𝑒𝑒𝑝𝑝𝑓𝑓𝑐𝑐�   (10) 

where 𝐾𝐾𝑐𝑐𝑘𝑘 = 1 − 𝑒𝑒𝑥𝑥𝑧𝑧2
𝑑𝑑
𝑉𝑉𝑥𝑥
− 𝑒𝑒𝑣𝑣

𝑀𝑀𝑐𝑐
𝑘𝑘

𝑉𝑉𝑐𝑐𝑖𝑖
 

The producer surplus in equation (8) can be now rewritten as:  

𝑃𝑃𝑐𝑐𝑘𝑘𝑘𝑘 = 𝑓𝑓𝑐𝑐𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘 �𝐾𝐾𝑐𝑐𝑘𝑘 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑐𝑐𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑥𝑥𝑧𝑧2
𝑟𝑟𝑘𝑘

𝑉𝑉𝑥𝑥
− 𝑒𝑒𝑝𝑝𝑓𝑓𝑐𝑐� − 𝐵𝐵𝑐𝑐 𝑁𝑁𝑐𝑐𝑘𝑘

𝐷𝐷𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

𝑉𝑉𝑐𝑐𝑖𝑖ℎ𝑐𝑐𝑘𝑘𝑘𝑘
   (11) 

The consumer surplus 𝐺𝐺𝑐𝑐𝑘𝑘𝑘𝑘 is formulated for region k and time period i. The consumer 

surplus is the total user benefit minus the prices that transit users actually pay. The total social 

benefit function can be obtained by using the willingness to pay function in equation (2). The 

fare in equation (2) is formulated as a function of the demand density, 𝑄𝑄𝑐𝑐𝑘𝑘𝑘𝑘: 

𝑓𝑓𝑐𝑐 = 1
𝑒𝑒𝑝𝑝
�𝐾𝐾𝑐𝑐𝑘𝑘 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑐𝑐𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑥𝑥𝑧𝑧2

𝑟𝑟𝑘𝑘

𝑉𝑉𝑥𝑥
� − 𝑄𝑄𝑐𝑐𝑘𝑘𝑘𝑘

𝑒𝑒𝑝𝑝𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘
      (12) 

The total user benefit is then obtained by integrating equation (12) over the demand density, 𝑄𝑄𝑐𝑐𝑘𝑘𝑘𝑘, 

which is expressed as:  

∫𝑓𝑓𝑐𝑐𝑑𝑑𝑄𝑄𝑐𝑐𝑘𝑘𝑘𝑘 = 1
𝑒𝑒𝑝𝑝
�𝐾𝐾𝑐𝑐𝑘𝑘 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑐𝑐𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑥𝑥𝑧𝑧2

𝑟𝑟𝑘𝑘

𝑉𝑉𝑥𝑥
� 𝑄𝑄𝑐𝑐𝑘𝑘𝑘𝑘 −

�𝑄𝑄𝑐𝑐𝑘𝑘𝑘𝑘�
2

2𝑒𝑒𝑝𝑝𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘
     (13) 

Equation (13) is rearranged by substituting the potential demand density 𝑞𝑞𝑘𝑘𝑘𝑘 from equation (2). 

The total user benefit 𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝑘𝑘𝑘𝑘 is formulated as follows:  

𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝑘𝑘𝑘𝑘 = 𝑄𝑄𝑐𝑐𝑘𝑘𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

2𝑒𝑒𝑝𝑝
�𝐾𝐾𝑐𝑐𝑘𝑘 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑐𝑐𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑥𝑥𝑧𝑧2

𝑟𝑟𝑘𝑘

𝑉𝑉𝑥𝑥
+ 𝑒𝑒𝑝𝑝𝑓𝑓𝑐𝑐�      (14) 

The consumer surplus is formulated as the total user benefit minus the fares that users actually 

pay to the conventional bus providers:  

 𝐺𝐺𝑐𝑐𝑘𝑘𝑘𝑘 = 𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

2𝑒𝑒𝑝𝑝
�𝐾𝐾𝑐𝑐𝑘𝑘 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑐𝑐𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑥𝑥𝑧𝑧2

𝑟𝑟𝑘𝑘

𝑉𝑉𝑥𝑥
− 𝑒𝑒𝑝𝑝𝑓𝑓𝑐𝑐�

2
     (15) 



 The total welfare in equation (8) that sums the producer surplus and consumer surplus in 

region k and period i is then expressed as:  

𝑌𝑌𝑐𝑐𝑘𝑘𝑘𝑘 = 𝑓𝑓𝑐𝑐𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘 �𝐾𝐾𝑐𝑐𝑘𝑘 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑐𝑐𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑥𝑥𝑧𝑧2
𝑟𝑟𝑘𝑘

𝑉𝑉𝑥𝑥
− 𝑒𝑒𝑝𝑝𝑓𝑓𝑐𝑐� − 𝐵𝐵𝑐𝑐 𝑁𝑁𝑐𝑐𝑘𝑘

𝐷𝐷𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

𝑉𝑉𝑐𝑐𝑖𝑖ℎ𝑐𝑐𝑘𝑘𝑘𝑘
+ 𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

2𝑒𝑒𝑝𝑝
�𝐾𝐾𝑐𝑐𝑘𝑘 −

𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑐𝑐𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑥𝑥𝑧𝑧2
𝑟𝑟𝑘𝑘

𝑉𝑉𝑥𝑥
− 𝑒𝑒𝑝𝑝𝑓𝑓𝑐𝑐�

2
          (16) 

The total welfare for the entire system is formulated as follows:  

𝑌𝑌𝑐𝑐 = ∑ ∑ 𝑌𝑌𝑐𝑐𝑘𝑘𝑘𝑘 = ∑ ∑ �𝑃𝑃𝑐𝑐𝑘𝑘𝑘𝑘 + 𝐺𝐺𝑐𝑐𝑘𝑘𝑘𝑘�𝐼𝐼
𝑖𝑖=1

𝐾𝐾
𝑘𝑘=1

𝐼𝐼
𝑖𝑖=1

𝐾𝐾
𝑘𝑘=1   

𝑌𝑌𝑐𝑐 = ∑ ∑ �𝑓𝑓𝑐𝑐𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘 �𝐾𝐾𝑐𝑐𝑘𝑘 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑐𝑐𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑥𝑥𝑧𝑧2
𝑟𝑟𝑘𝑘

𝑉𝑉𝑥𝑥
− 𝑒𝑒𝑝𝑝𝑓𝑓𝑐𝑐� − 𝐵𝐵𝑐𝑐 𝑁𝑁𝑐𝑐𝑘𝑘

𝐷𝐷𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

𝑉𝑉𝑐𝑐𝑖𝑖ℎ𝑐𝑐𝑘𝑘𝑘𝑘
+𝐼𝐼

𝑖𝑖=1
𝐾𝐾
𝑘𝑘=1

𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

2𝑒𝑒𝑝𝑝
�𝐾𝐾𝑐𝑐𝑘𝑘 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑐𝑐𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑥𝑥𝑧𝑧2

𝑟𝑟𝑘𝑘

𝑉𝑉𝑥𝑥
− 𝑒𝑒𝑝𝑝𝑓𝑓𝑐𝑐�

2
�       (17) 

Equation (17) can be written as:  

𝑌𝑌𝑐𝑐 = ∑ ∑ �𝑓𝑓𝑐𝑐𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑖𝑖𝑡𝑡𝑘𝑘𝑘𝑘 �𝐾𝐾𝑐𝑐𝑘𝑘 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑐𝑐𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑥𝑥𝑧𝑧2
𝑟𝑟𝑘𝑘

𝑉𝑉𝑥𝑥
− 𝑒𝑒𝑝𝑝𝑓𝑓𝑐𝑐��𝐼𝐼

𝑖𝑖=1
𝐾𝐾
𝑘𝑘=1 − ∑ ∑ �𝐵𝐵𝑐𝑐 𝑁𝑁𝑐𝑐𝑘𝑘

𝐷𝐷𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

𝑉𝑉𝑐𝑐𝑖𝑖ℎ𝑐𝑐𝑘𝑘𝑘𝑘
�𝐼𝐼

𝑖𝑖=1
𝐾𝐾
𝑘𝑘=1 +

∑ ∑ �𝐿𝐿
𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

2𝑒𝑒𝑝𝑝
�𝐾𝐾𝑐𝑐𝑘𝑘 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑐𝑐𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑥𝑥𝑧𝑧2

𝑟𝑟𝑘𝑘

𝑉𝑉𝑥𝑥
− 𝑒𝑒𝑝𝑝𝑓𝑓𝑐𝑐�

2
�𝐼𝐼

𝑖𝑖=1
𝐾𝐾
𝑘𝑘=1       (18) 

The social welfare in equation (18) is maximized by optimizing the decision variables of vehicle 

size, fares, headways, fleet sizes, and route spacings (or the numbers of zones).  

 

4.2. Welfare Formulation for Flexible Services  

The welfare of flexible bus services in region k and period i, 𝑌𝑌𝑓𝑓𝑘𝑘𝑘𝑘, is formulated as the 

sum of producer surplus 𝑃𝑃𝑓𝑓𝑘𝑘𝑘𝑘 and consumer surplus 𝐺𝐺𝑓𝑓𝑘𝑘𝑘𝑘:   

𝑌𝑌𝑓𝑓𝑘𝑘𝑘𝑘 = 𝑃𝑃𝑓𝑓𝑘𝑘𝑘𝑘 + 𝐺𝐺𝑓𝑓𝑘𝑘𝑘𝑘          (19) 

The producer surplus 𝑃𝑃𝑓𝑓𝑘𝑘𝑘𝑘 is computed by subtracting the flexible bus operating cost from the 

revenue of the flexible bus service:  

𝑃𝑃𝑓𝑓𝑘𝑘𝑘𝑘 = 𝑅𝑅𝑓𝑓𝑘𝑘𝑘𝑘 − 𝐶𝐶𝑓𝑓𝑘𝑘𝑘𝑘          (20) 

The total revenue of the flexible bus service in region k and period i, 𝑅𝑅𝑓𝑓𝑘𝑘𝑘𝑘, is the flexible bus 

service fare multiplied by total demand density:  

𝑅𝑅𝑓𝑓𝑘𝑘𝑘𝑘 = 𝑓𝑓𝑓𝑓𝑄𝑄𝑓𝑓𝑘𝑘𝑘𝑘𝑡𝑡
𝑘𝑘𝑘𝑘 = 𝑓𝑓𝑓𝑓𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑓𝑓𝑘𝑘𝑘𝑘𝑡𝑡

𝑘𝑘𝑖𝑖�1 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑓𝑓𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑣𝑣𝑀𝑀𝑓𝑓
𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑝𝑝𝑓𝑓𝑓𝑓�    (21) 

Then, the producer surplus in region k and period i 𝑃𝑃𝑓𝑓𝑘𝑘𝑘𝑘 is:  



𝑃𝑃𝑓𝑓𝑘𝑘𝑘𝑘 = 𝑓𝑓𝑓𝑓𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑓𝑓𝑘𝑘𝑘𝑘𝑡𝑡
𝑘𝑘𝑘𝑘�1 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑓𝑓𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑣𝑣𝑀𝑀𝑓𝑓

𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑝𝑝𝑓𝑓𝑓𝑓� − �
𝐵𝐵𝑓𝑓 𝑁𝑁𝑓𝑓

𝑘𝑘𝐷𝐷𝑓𝑓
𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

𝑉𝑉𝑓𝑓
𝑖𝑖ℎ𝑓𝑓
𝑘𝑘𝑘𝑘 +

∅𝐵𝐵𝑓𝑓 𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘�𝑞𝑞𝑓𝑓
𝑘𝑘𝑘𝑘ℎ𝑓𝑓

𝑘𝑘𝑘𝑘 𝑢𝑢⁄

𝑉𝑉𝑓𝑓
𝑖𝑖ℎ𝑓𝑓
𝑘𝑘𝑘𝑘 �  

            (22) 

The consumer surplus 𝐺𝐺𝑓𝑓𝑘𝑘𝑘𝑘 in region k and period i the total social benefit of the flexible 

bus services minus the price that flexible bus users actually pay. The total social benefit of the 

flexible bus service 𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑘𝑘𝑘𝑘 can be found by integrating the willingness to pay function:  

𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑘𝑘𝑘𝑘 = ∫ 𝑓𝑓𝑓𝑓𝑑𝑑𝑄𝑄𝑓𝑓𝑘𝑘𝑘𝑘 = ∫ � 1𝑒𝑒𝑝𝑝 �𝐾𝐾𝑓𝑓
𝑘𝑘 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑓𝑓𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑣𝑣

𝐷𝐷𝑐𝑐𝑘𝑘𝑘𝑘

2𝑉𝑉𝑓𝑓
𝑖𝑖� −

𝑄𝑄𝑓𝑓
𝑘𝑘𝑘𝑘

𝑒𝑒𝑝𝑝𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘
� 𝑑𝑑𝑄𝑄𝑓𝑓𝑘𝑘𝑘𝑘   

𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑘𝑘𝑘𝑘 =
𝑄𝑄𝑓𝑓
𝑘𝑘𝑘𝑘

𝑒𝑒𝑝𝑝
�𝐾𝐾𝑓𝑓𝑘𝑘 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑓𝑓𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑣𝑣

𝐷𝐷𝑐𝑐𝑘𝑘𝑘𝑘

2𝑉𝑉𝑓𝑓
𝑖𝑖� −

�𝑄𝑄𝑓𝑓
𝑘𝑘𝑘𝑘�

2

2𝑒𝑒𝑝𝑝𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘
     (23) 

By substituting the potential demand density 𝑞𝑞𝑘𝑘𝑘𝑘 from equation (4), the total social benefit of the 

flexible bus in region k and period i 𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑘𝑘𝑘𝑘 becomes:  

 𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑘𝑘𝑘𝑘 =
𝑄𝑄𝑓𝑓
𝑘𝑘𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

2𝑒𝑒𝑝𝑝
�𝐾𝐾𝑓𝑓𝑘𝑘 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑓𝑓𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑣𝑣

𝐷𝐷𝑐𝑐𝑘𝑘𝑘𝑘

2𝑉𝑉𝑓𝑓
𝑖𝑖 + 𝑒𝑒𝑝𝑝𝑓𝑓𝑓𝑓�      (24) 

The consumer surplus of the flexible bus service is now formulated as the total social benefit 

minus the price that users actually pay to the flexible bus providers:  

𝐺𝐺𝑓𝑓𝑘𝑘𝑘𝑘 = 𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

2𝑒𝑒𝑝𝑝
�𝐾𝐾𝑓𝑓𝑘𝑘 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑓𝑓𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑣𝑣

𝐷𝐷𝑐𝑐𝑘𝑘𝑘𝑘

2𝑉𝑉𝑓𝑓
𝑖𝑖 − 𝑒𝑒𝑝𝑝𝑓𝑓𝑓𝑓�

2
      (25) 

The total welfare of the flexible bus service in region k and period i is now expressed as:  

𝑌𝑌𝑓𝑓𝑘𝑘𝑘𝑘 = 𝐺𝐺𝑓𝑓𝑘𝑘𝑘𝑘 + 𝑃𝑃𝑓𝑓𝑘𝑘𝑘𝑘    

𝑌𝑌𝑓𝑓𝑘𝑘𝑘𝑘 = 𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

2𝑒𝑒𝑝𝑝
�𝐾𝐾𝑓𝑓𝑘𝑘 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑓𝑓𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑣𝑣

𝐷𝐷𝑐𝑐𝑘𝑘𝑘𝑘

2𝑉𝑉𝑓𝑓
𝑖𝑖 − 𝑒𝑒𝑝𝑝𝑓𝑓𝑓𝑓�

2
+ 𝑓𝑓𝑓𝑓𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘�1 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑓𝑓𝑘𝑘𝑘𝑘 −

𝑒𝑒𝑣𝑣𝑀𝑀𝑓𝑓
𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑝𝑝𝑓𝑓𝑓𝑓� − �

𝐵𝐵𝑓𝑓 𝑁𝑁𝑓𝑓
𝑘𝑘𝐷𝐷𝑓𝑓

𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

𝑉𝑉𝑓𝑓
𝑖𝑖ℎ𝑓𝑓
𝑘𝑘𝑘𝑘 +

∅𝐵𝐵𝑓𝑓 𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘�𝑞𝑞𝑘𝑘𝑘𝑘ℎ𝑓𝑓
𝑘𝑘𝑘𝑘 𝑢𝑢⁄

𝑉𝑉𝑓𝑓
𝑖𝑖ℎ𝑓𝑓
𝑘𝑘𝑘𝑘 �      (26) 

 The social welfare for the entire flexible bus services is formulated as follows:   

𝑌𝑌𝑓𝑓 = ∑ ∑ 𝑌𝑌𝑓𝑓𝑘𝑘𝑘𝑘 = ∑ ∑ �𝐺𝐺𝑓𝑓𝑘𝑘𝑘𝑘 + 𝑃𝑃𝑓𝑓𝑘𝑘𝑘𝑘�𝐼𝐼
𝑖𝑖=1

𝐾𝐾
𝑘𝑘=1

𝐼𝐼
𝑖𝑖=1

𝐾𝐾
𝑘𝑘=1   



𝑌𝑌𝑐𝑐 = ∑ ∑ �𝐿𝐿
𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

2𝑒𝑒𝑝𝑝
�𝐾𝐾𝑓𝑓𝑘𝑘 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑓𝑓𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑣𝑣

𝐷𝐷𝑐𝑐𝑘𝑘𝑘𝑘

2𝑉𝑉𝑓𝑓
𝑖𝑖 − 𝑒𝑒𝑝𝑝𝑓𝑓𝑓𝑓�

2
+ 𝑓𝑓𝑓𝑓𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘�1 −𝐼𝐼

𝑖𝑖=1
𝐾𝐾
𝑘𝑘=1

𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑓𝑓𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑣𝑣𝑀𝑀𝑓𝑓
𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑝𝑝𝑓𝑓𝑓𝑓� − �

𝐵𝐵𝑓𝑓 𝑁𝑁𝑓𝑓
𝑘𝑘𝐷𝐷𝑓𝑓

𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

𝑉𝑉𝑓𝑓
𝑖𝑖ℎ𝑓𝑓
𝑘𝑘𝑘𝑘 +

∅𝐵𝐵𝑓𝑓 𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘�𝑞𝑞𝑘𝑘𝑘𝑘ℎ𝑓𝑓
𝑘𝑘𝑘𝑘 𝑢𝑢⁄

𝑉𝑉𝑓𝑓
𝑖𝑖ℎ𝑓𝑓
𝑘𝑘𝑘𝑘 � �    (27) 

Equation (27) can be written as:  

𝑌𝑌𝑓𝑓 = ∑ ∑ �𝑓𝑓𝑓𝑓𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘�1 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑓𝑓𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑣𝑣𝑀𝑀𝑓𝑓
𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑝𝑝𝑓𝑓𝑓𝑓��𝐼𝐼

𝑖𝑖=1
𝐾𝐾
𝑘𝑘=1 − ∑ ∑ �

𝐵𝐵𝑓𝑓 𝑁𝑁𝑓𝑓
𝑘𝑘𝐷𝐷𝑓𝑓

𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

𝑉𝑉𝑓𝑓
𝑖𝑖ℎ𝑓𝑓
𝑘𝑘𝑘𝑘 +𝐼𝐼

𝑖𝑖=1
𝐾𝐾
𝑘𝑘=1

∅𝐵𝐵𝑓𝑓 𝐿𝐿𝑘𝑘𝑊𝑊𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘�𝑞𝑞𝑘𝑘𝑘𝑘ℎ𝑓𝑓
𝑘𝑘𝑘𝑘 𝑢𝑢⁄

𝑉𝑉𝑓𝑓
𝑖𝑖ℎ𝑓𝑓
𝑘𝑘𝑘𝑘 �+ ∑ ∑ �𝐿𝐿

𝑘𝑘𝑊𝑊𝑘𝑘𝑞𝑞𝑘𝑘𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

2𝑒𝑒𝑝𝑝
�𝐾𝐾𝑓𝑓𝑘𝑘 − 𝑒𝑒𝑤𝑤𝑧𝑧1ℎ𝑓𝑓𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑣𝑣

𝐷𝐷𝑐𝑐𝑘𝑘𝑘𝑘

2𝑉𝑉𝑓𝑓
𝑖𝑖 − 𝑒𝑒𝑝𝑝𝑓𝑓𝑓𝑓�

2
�𝐼𝐼

𝑖𝑖=1
𝐾𝐾
𝑘𝑘=1    (28) 

 Equation (28) must be maximized by optimizing the decision variables of flexible bus 

size, fares, headways, fleet sizes, and service areas. 

 

4.3. Solution Method 

The welfare formulations designed for both conventional and flexible services are 

nonlinear and they have both integer and continuous variables. Such nonlinear mixed integer 

formulations are known to be NP-hard, and thus no exact solution methods are available for them. 

In the bus transit welfare literature, analytic optimization is applicable to small problems. Thus, 

the problem of multiple regions as well as multiple periods has not been solved by analytic 

optimization. A numerical method (i.e., a real coded genetic algorithm (RCGA)) is chosen to 

solve the proposed formulations because it can overcome local optima as well as handling 

integer variables efficiently. Details of the real coded genetic algorithm we used can be found 

elsewhere (Deb, 2000; Deep et al, 2009).  

 

4.4. Numerical Example     

In this section, a numerical case study is designed to check formulations without financial 

constraints. For this case study, the maximum allowable headway constraints are enforced. The 

vehicle size (seats/bus) is one of the input values, and its sensitivity to the system welfare is also 

analyzed.  

 



4.4.1. Input Values    

For a numerical example, three local regions and four time periods are considered. The 

baseline input values are shown in Table 1. The potential demand densities, sizes of regions, and 

time periods are shown in Table 2. The minimum and maximum headways are assumed to be 3 

and 60 minutes, respectively. The minimum and maximum fleet sizes can be obtained with 

headway boundaries. For the vehicle size inputs, 7, 10, 16, 20, 25, 35, and 45 seats are the 

acceptable values.  

Regions A, B, and C have the same demand densities. However, the regional 

characteristics are different. Region A is 4 mile2, region B is 12.25 mile2, and region C is 25 

mile2. Therefore, the total demand in region C exceeds those in regions A or B, although the 

demand densities are the same. The same demand density inputs are assumed initially for all 

regions, in order to identify the effects of region size.  

 
Table 2 Potential Demand, Service time, Line-haul Distance, and Sizes of Regions 

Demand (trips/mile2/hour) 
Region 

Period A B C 

1 90 90 90 
2 40 40 40 
3 20 20 20 
4 10 10 10 

Time(hours) 
Region 

Period A B C 

1 4 4 4 
2 6 6 6 
3 8 8 8 
4 6 6 6 

Region A B C 
Line-haul Distance (miles) 6 6 6 
Length of Region (miles) 2 3.5 5 
Width of Region (miles) 2 3.5 5 
Regional Area (mile2) 4 12.25 25 

 

4.4.2. Discussion of Results     

 Figure 2 shows that fares optimized by  RCGA for conventional services with 7 and 10 

seated vehicles are non-zero. We constrained the minimum headway at three minutes. However, 

with these smaller vehicle sizes, resulting headways are less than three minutes, thereby violating 

the low boundary of the headway. In other words, the entire demand cannot be served with the 

minimum 3 minutes headways. Thus, it is confirmed that the optimization model cannot find any 

feasible solutions with the conventional vehicle sizes of 7 or 10 seats because the input demand 



is too high. It is possible that if demand inputs were lower, conventional services with 7 or 10 

seats buses could have solutions with optimized fares of zero. The flexible services also cannot 

find any feasible solutions for vehicle sizes of 7, 10, and 16 seats.  

The solution quality of RCGA can be checked with the fare result comparison between 

analytic optimization and RCGA. For larger vehicle sizes such as 16 seats for conventional 

services and 20 or more seats for both conventional and flexible services, the optimized fares 

obtained by RCGA are zero. The fares obtained through analytic optimization using equations 

(18) and (20) are also zero. Thus, it is possible to confirm that RCGA finds very good (i.e., at 

least nearly optimal) solutions, although solutions for other decision variables cannot be 

compared with analytic optimization. 

 

 
Figure 2 Optimized Fares with Vehicle Size Inputs 

 

Figure 3 shows that the welfare is maximized (at 120219 $/day) when the conventional 

bus size is 25 seats. For the flexible services, the maximum welfare of flexible services is 113999 

$/day with 20 seat vehicles. 
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Figure 3 Welfare vs. Vehicle Sizes 

 

Table 3 shows the actual trip density results of conventional and flexible services. The 

actual trip densities of conventional services among regions A, B and C are very close (less than 

one trip/mile2/hour). The sizes of the region A, B, and C are 4, 12.25, and 25 mile2, respectively 

as shown in Table 2. These results confirm that the size of regions does not significantly affect 

the density of actual trips. However, it is found that the actual trips for flexible services are 

higher than the actual trips for conventional services.  

The main reason for more actual trips in flexible services is that flexible services have 

door-to-door services, and hence zero access costs. However, conventional services include 

access times in the elastic demand function. Thus, it is noted that when demands are sensitive to 

the in-vehicle time, waiting time, and access time, flexible services are preferable to 

conventional services in terms of the total actual trips served.  

 
Table 3 Demand with Elasticity 

Demand (trips/mile2/hour) 
 Conventional Services Flexible Services 

Region 
Period A B C A B C 

1 74.21 73.59 73.35 77.01 75.86 74.20 
2 32.53 31.74 31.47 33.68 32.83 32.30 
3 15.81 15.26 15.36 16.05 16.32 15.98 
4 7.22 6.72 7.30 7.85 7.55 8.10 
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Table 4 shows the optimized number of zones for conventional and flexible services. The 

numbers of zones for conventional services are two, four, and six for regions A, B, and C, 

respectively. The route spacings (which can be obtained by Width of region / Number of zones) 

are then 1.0, 0.875, and 0.833 miles for regions A, B, and C, respectively. The number of zones 

increases as the width of a region increases.  

The sizes of regions A, B, and C are 4, 12.25, and 25 mile2, respectively, as shown in 

Table 2. The numbers of zones for flexible services are one, three, and five for regions A, B, and 

C, respectively. Hence, optimized service areas for flexible services are 4.0, 4.08, and 5.0 mile2 

for regions A, B, and C, respectively. Additional zones increase operating costs. Thus, it is 

concluded that the optimal areas of flexible services with given inputs range between four and 

five square miles.  

 
Table 4 Optimized Number of Zones 

 Conventional Services Flexible Services 
Region 

Period A B C A B C 

Number of Zones  2 4 6 1 3 5 
Route Spacings (mile)  1.0 0.875 0.833 - - - 
Service Areas (mile2) - - - 4.0 4.08 5.0 

 

The optimized headways for both conventional and flexible services are provided in 

Table 5. For conventional services, period 1, which has higher demand densities than other 

periods, has optimized headways of about four to six minutes. Optimized headways increase as 

demand densities decrease. It is also found that headways of flexible services are generally lower 

than headways of conventional services if they are compared in the same period and the same 

region. This indirectly explains why flexible services obtain more actual trips than conventional 

services. For period 1, flexible service headways are slightly above 3 minutes, which is the 

minimum headway boundary.  

 For conventional services, the longest headway, which is about 31 minutes, is used for 

period 4 in region B. For flexible services, period 4 in region B has headways of about 21 

minutes.  

 
Table 5 Optimized Headways in Minutes 

Headways (minute) 
 Conventional Services Flexible Services 

Region A B C A B C 



Period 
1 5.89 6.24 4.86 3.53 3.59 3.17 
2 7.85 10.41 9.72 6.77 7.68 6.60 
3 11.78 15.61 12.96 13.54 10.52 9.84 
4 23.56 31.22 19.44 18.43 21.03 10.83 

 

Table 6 shows optimized fleet sizes for conventional and flexible services. As expected, 

period 1 requires larger fleet sizes than other periods. It is also noted that flexible services 

require much larger fleet sizes than conventional services. Conventional services require a total 

of 166 vehicles with 25 seats, while flexible services require 268 vehicles with 20 seats. Larger 

fleet sizes imply higher operating costs. 

 
Table 6 Optimized Fleet Sizes 

Fleet Sizes (buses) 
 Conventional Services Flexible Services 

Region 
Period A B C A B C 

1 4 5 8 12 13 17 
2 3 3 4 6 6 8 
3 2 2 3 3 4 5 
4 1 1 2 2 2 4 

Total Fleet Size (buses) 166 268 

 

Table 7 provides costs and profits for conventional and flexible services. The analytically 

optimized fares using equations (18) and (28) are zero. Numerically optimized fares for both 

conventional and flexible services also show that fares are zero. Thus, without subsidy, revenues 

of conventional and flexible services in any periods are zero, and thus total revenues are also 

zero. Therefore, profits are simply negative values of costs in each period and each region. Costs 

and profits are shown per hour because each period has a different duration. As shown in Figure 

7, the total cost of flexible services exceeds that of conventional services by about 52%..  

 
Table 7 Costs and Profits for Conventional and Flexible Services 

Cost ($/hour) 
 Conventional Services Flexible Services 

Region 
Period A B C A B C 

1 280.0 700.0 1680.0 408.0 1326.0 2890.0 
2 210.0 420.0 840.0 204.0 612.0 1360.0 
3 140.0 280.0 630.0 102.0 408.0 850.0 
4 70.0 140.0 420.0 68.0 204.0 680.0 

Total Cost ($/day) 31640 48144 
Profit ($/hour) 

 Conventional Services Flexible Services 
Region 

Period A B C A B C 

1 -280.0 -700.0 -1680.0 -408.0 -1326.0 -2890.0 



2 -210.0 -420.0 -840.0 -204.0 -612.0 -1360.0 
3 -140.0 -280.0 -630.0 -102.0 -408.0 -850.0 
4 -70.0 -140.0 -420.0 -68.0 -204.0 -680.0 

Total Profit ($/day) -31640 -48144 

 

Table 8 shows the consumer surplus results from conventional and flexible services. 

Period 1 in region A has the highest consumer surplus, which is 42705$/period for conventional 

services and 43692 $/period for flexible services. It is found that the consumer surplus of flexible 

services exceeds that of conventional services. The main reason is that with elasticity, the actual 

trips for flexible services exceed those for conventional services. The main reason for the 

difference in actual trips is the access time factor, as already discussed. The total consumer 

surplus of flexible services is $162143/day while the total consumer surplus of conventional 

services is $151859/day.  

 
Table 8 Consumer Surplus 

Consumer Surplus ($/period) 
 Conventional Services Flexible Services 

Region 
Period A B C A B C 

1 6994.1 21060.7 42705.5 7531.7 22381.2 43692.5 
2 4534.1 13218.9 26523.8 4862.4 14148.1 27936.9 
3 2854.9 8151.2 16842.9 2944.8 9321.6 18240.9 
4 892.5 2370.6 5709.4 1056.3 2989.8 7037.4 

Total ($/day) 151859 162143 

 

From previously discussed results, it is found that flexible services have a larger 

consumer surplus than conventional services. Flexible services also have higher operating costs 

than conventional services, which explain why flexible services have a larger negative profit (i.e., 

loss) than conventional services.  

Table 9 provides welfare results of conventional and flexible services for each period and 

region. It is noted that the total welfare of conventional services exceeds that of flexible services. 

For region A, the welfare of flexible services exceeds that of conventional services. For regions 

B and C, conventional services produce greater welfare than flexible services. As discussed, the 

higher cost of flexible service is the main reason why welfare is higher for conventional services 

than for flexible services. The total welfare difference between conventional and flexible 

services is about 5.45% (120219 vs. 113999).  

 



Table 9 Social Welfare 
Welfare ($/period) 

 Conventional Services Flexible Services 
Region 

Period A B C A B C 

1 5874.1 18260.7 35985.5 5899.7 17077.2 32132.5 
2 3274.1 10698.9 21483.8 3638.4 10476.1 19776.9 
3 1734.9 5911.2 11802.9 2128.8 6057.6 11440.9 
4 472.5 1530.6 3189.4 648.3 1765.8 2957.4 

Total ($/day) 120219 113999 

 

5. Welfare Maximization with Financial Constraints 

In addition to vehicle capacity constraints, financial (i.e., subsidy) constraints are 

considered in this section. With various subsidy inputs, the resulting variations of fares, 

headways and fleet sizes are explored. To consider additional financial constraints, formulations 

for conventional and flexible services are modified. 

5.1. Formulations and Solution Method   

5.1.1. Conventional Service Formulations   

The total welfare Yc is the sum of the welfare for all time and all regions, shown in 

equation (29). The financial constraint is expressed in equation (30). The amount of subsidies is 

an input value. If zero subsidies are provided, the financial constraint simply becomes that the 

profit should be non-negative. The maximum allowable headway (service capacity) constraints 

are also applied in equation (31): 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑌𝑌𝑐𝑐 = ∑ ∑ �𝑌𝑌𝑐𝑐𝑘𝑘𝑘𝑘�𝐼𝐼
𝑖𝑖=1

𝐾𝐾
𝑘𝑘=1         (29) 

subject to 

∑ ∑ �𝑃𝑃𝑐𝑐𝑘𝑘𝑘𝑘�𝐼𝐼
𝑖𝑖=1

𝐾𝐾
𝑘𝑘=1 + ∑ ∑ �𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘�𝐼𝐼

𝑖𝑖=1
𝐾𝐾
𝑘𝑘=1 ≥ 0       (30) 

ℎ𝑐𝑐𝑘𝑘𝑘𝑘 ≤ ℎ𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘 = 𝑆𝑆𝑐𝑐𝑙𝑙𝑐𝑐

𝑟𝑟𝑘𝑘𝑊𝑊𝑘𝑘𝑑𝑑𝑠𝑠𝑘𝑘𝑘𝑘𝑄𝑄𝑐𝑐𝑘𝑘𝑘𝑘
         (31) 

5.1.2. Flexible Service Formulations   

Flexible service formulations that consider financial constraints are provided in equations 

(32~34). The maximum allowable headway constraints for flexible services in equation (34) are 

different from those for conventional services in equation (31):  



𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑌𝑌𝑓𝑓 = ∑ ∑ �𝑌𝑌𝑓𝑓𝑘𝑘𝑘𝑘�𝐼𝐼
𝑖𝑖=1

𝐾𝐾
𝑘𝑘=1         (32) 

subject to 

∑ ∑ �𝑃𝑃𝑓𝑓𝑘𝑘𝑘𝑘�𝐼𝐼
𝑖𝑖=1

𝐾𝐾
𝑘𝑘=1 + ∑ ∑ �𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘�𝐼𝐼

𝑖𝑖=1
𝐾𝐾
𝑘𝑘=1 ≥ 0       (33) 

ℎ𝑓𝑓𝑘𝑘𝑘𝑘 ≤ ℎ𝑓𝑓,𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘 = 𝑆𝑆𝑓𝑓𝑙𝑙𝑓𝑓

𝐴𝐴𝑘𝑘𝑄𝑄𝑓𝑓
𝑘𝑘𝑘𝑘          (34) 

5.1.3. Solution Method  

Welfare formulations for conventional and flexible services are highly nonlinear. In 

addition to the nonlinear objective functions, constraints are moved to the objective function with 

the Lagrange multiplier. Then, the objective function becomes more complex. Since objective 

functions are nonlinear and variables are continuous or integer, a real coded genetic algorithm 

(RCGA) is chosen to solve formulations. Fares for either conventional or flexible services are 

continuous variables, and fleet sizes are integer variables. Headways can be obtained from the 

optimized fleet sizes.  

5.2. Numerical Examples     

In this numerical example, financial (subsidy) constraints are enforced in addition to 

maximum allowable headway constraints. Different input values for subsidy are considered 

through sensitivity analysis. As explained below, the sum of the total revenue and the total 

subsidy should be larger or equal to the total cost. If the total subsidy is zero, the total revenue 

minus the total cost (i.e. the profit) should be non-negative. The total subsidy is an input value; 

unit subsidy ($/potential trip) is used to calculate the total amount of subsidies in this numerical 

analysis.  

It is possible to jointly optimize vehicle sizes, numbers of zones, headways, and fleet 

sizes with a financial constraint. However, computation times are much longer and optimized 

vehicle sizes and numbers of zones are not significantly different from the ones in the financially 

unconstrained case.  Thus, by using the optimized vehicle sizes and numbers of zones from 

financially unconstrained results, the complexity of financially constrained welfare formulations 

is reduced and converged solutions are found relatively quickly. It is also reasonable to think that 

route spacings of conventional services, service areas of flexible services, and vehicle sizes can 



be determined in an earlier planning level. The service providers (operators) may then want to re-

optimize service frequencies and fares based on the subsidy.  

Thus, headways, fleet sizes, and fares are optimized here with the various subsidy inputs. 

The value of route spacings for conventional services, service areas for flexible services, and 

vehicle sizes are adapted from the solution of the financially unconstrained optimization model. 

The main focus of this numerical analysis is on exploring how optimized fares are changed along 

other decision variables with different financial constraints (i.e., subsidy). Results of 

conventional services will be discussed first, and then results of flexible services will be 

discussed.  

5.2.1. Results of Conventional Services      

Subsidy inputs are applied from zero to 1.2$/potential trip with 0.2$/potential trip 

increment. Table 10 provides detailed results for conventional services with various subsidy 

inputs.  

For conventional services, seven sensitivity cases are considered, as shown in Figure 4. 

The amount of subsidy increases linearly. The total number of potential trips for the system with 

given inputs is 33825. Thus, when the unit subsidy is 1.0$/potential trip, the total subsidy is 

$33825/day.  

 

Figure 4 Total Amount of Subsidy 
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Figure 5 provides optimized fares of conventional services from various subsidy inputs. 

For the zero subsidy case, the conventional service fare is 1.3$/actual trip. As the subsidies 

increases, the optimized fare decreases quite linearly. When the unit subsidy is about 

1.0$/potential trip, the fare becomes zero, which means the total revenue is zero, and all the costs 

of bus operations are covered by the subsidy.  

 

Figure 5 Fares for Conventional Services with Subsidies 

 

Figure 6 provides profit results from various financial constraints (i.e., subsidy inputs). 

With the subsidy provision, the revenue decreases since the optimized fare decreases. Thus, the 

profit also decreases (as expected) because the revenue decreases. In the formulation shown in 

equation (30) the sum of the profit and subsidy can be either zero or positive. For the zero 

subsidy case result, the profit is positive, which means the optimized fare could have been 

slightly reduced to use this available budget.  
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Figure 6 Profits of Conventional Services with Subsidies 
 

Figure 7 shows total costs of conventional services for various subsidy inputs. As 

expected, the cost of the zero subsidy case is lower than other subsidy cases. From the 0.2 

$/potential trip to 1.2$/potential trip, total costs are identical, which means, their resulting fleet 

sizes do not change over different subsidy inputs. It explains why fleet sizes and headways do 

not change significantly in conventional services with financial constraints while the fare 

decreases as the subsidy increases.  
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Figure 7 Total Costs of Conventional Services with Subsidies 
 

The total consumer surplus in the zero subsidy case is $114699/day, as shown in Figure 8. 

Consumer surplus results of other subsidy cases show that the consumer surplus increases until 

the unit subsidy is 1.0$/potential trip. After that, the consumer surplus does not change 

significantly. When the unit subsidy is 1.2$/potential trip, the consumer surplus for the 

conventional services is 151859$/day. The consumer surplus difference between the subsidy 

inputs 1.0 and 1.2 $/potential trip is 39$/day, which is tiny if 39$ is divided by the total actual 

trips served per day. Thus, it can be confirmed that the consumer surplus does not increase 

although a unit subsidy above 1.0$/potential trip is provided.  
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Figure 8 Consumer Surplus of Conventional Services with Subsidies 
 

Figure 9 shows the social welfare results for conventional services. The welfare of the 

zero subsidy case is 118321$/day, while the maximum system welfare is found as 120219$/day 

from the unit subsidy of 1.0$/potential trip or more. As expected, when the total cost is fully 

covered by subsidies, the system welfare becomes identical to the one without financial 

constraints (discussed in the previous section). There is no unusual observation among 

comprehensive sets of sensitivity analyses. Thus, numerical results confirm that RCGA used here 

finds good and consistent solutions although it does not guarantee the global optimality of 

solutions.  
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Figure 9 Total System Welfares of Conventional Services with Subsidies 
 

Table 10 summarizes all results of conventional services with various subsidy input 

values. One further finding worth noting is that actual trips increase as the subsidy increases. For 

instance, the zero subsidy case serves about 68.7% of the total potential demand, but the fully 

subsidized case serves about 79.2% of the total potential demand. 

Table 10 Results of Conventional Services with Financial Constraints 

Unit Subsidy ($/trip) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 

Fare 1.30 1.02 0.72 0.44 0.17 0.00 0.00 

Revenue 30221.6 24875.0 18110.4 11345.0 4580.0 38.8 0.0 

Cost 26600.0 31640.0 31640.0 31640.0 31640.0 31640.0 31640.0 

Profit 3621.6 -6765.0 -13529.6 -20295.0 -27060.0 -31601.2 -31640.0 

Subsidy 0.0 6765.0 13530.0 20295.0 27060.0 33825.0 40590.0 

Profit + Subsidy 3621.6 0.0 0.4 0.0 0.0 2223.8 8950.0 

Consumer Surplus 114699.0 125751.3 133131.3 140283.9 147242.9 151819.8 151858.6 

Welfare 118321.0 118986.3 119601.7 119988.9 120183.0 120218.6 120218.6 

Total Actual Trips  23247 24381 25087 25754 26386 26793 26797 
Total Actual Trips  

/ Total Potential Trips  68.7% 72.1% 74.2% 76.1% 78.0% 79.2% 79.2% 
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5.2.2. Results of Flexible Services      

Figures 10~15 provide results for flexible services with financially constrained cases (i.e., 

sensitivity analyses of subsidies with respect to welfares). Table 11 also provides details on these 

results.  

Figure 10 shows optimized fares for flexible services with different subsidy inputs. In the 

zero subsidy case, the optimized fare is 1.91$/actual trip, which exceeds the optimized fare 

(1.30$/actual trip, Table 5) of conventional services with the zero subsidy case. The higher 

flexible service operating cost results in the higher flexible service fare. The optimized fares 

decrease as the subsidy increases. When the unit subsidy is 1.4$/potential trip, the optimized fare 

for flexible services is close to zero (three cents per actual trip). When the unit subsidy is 

1.4$/potential trip, the total subsidy is 47355$/day, as shown in Figure 11. For conventional 

services (shown in Figure 5), the optimized fare becomes zero when the subsidy reaches 

1.0$/potential trip. Thus, it is found that flexible services require larger subsidies than 

conventional services to fully cover the operating cost. 

 

Figure 10 Fares for Flexible Services with Subsidies 
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Figure 11 Total Amount of Subsidy 
 

Figure 12 provides results of the profit. For the zero subsidy case, flexible services have 

zero profit, as expected; this means the operating cost is exactly equal to the revenue. The profit 

decreases as the subsidy increases because the optimized fare decreases.  

The cost of flexible service operation increases with the provision of subsidies since the 

financial subsidy allows providing more service frequencies. As shown in Figure 13, the total 

operating cost increases with the larger subsidy. As the subsidy increases, the optimized fare 

decreases so that the revenue also decreases. When the operating cost is fully subsidized, the 

optimized fare is supposed to be zero so that the collected revenue equals to zero as well. Since 

the profit is the revenue minus the cost, the absolute value of the profit will be equal to the 

absolute value of the profit if the revenue is zero. The absolute value of the minimum profit in 

Figure 12 and the absolute value of the maximum cost in Figure 13 are identical (i.e., unit 

subsidy of $1.8/actual trip). Thus, this finding explains why the optimized fare and revenue are 

zero for the fully subsidized case. This finding also confirms that the constraint in equation (33) 

is binding.    
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Figure 12 Profits of Flexible Services with Subsidies 

 

 
Figure 13 Costs of Flexible Services with Subsidies 

 

The consumer surplus with the zero subsidy case is $109,693/day, as shown in Figure 14. 

The higher subsidies result in the reduced fare and increase in actual trips. Therefore, the 

consumer surplus increases as the subsidy increases. The maximum consumer surplus is 

$162,143/day when the unit subsidy is $1.6/potential trip or higher.  
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Figure 14 Consumer Surplus of Flexible Services with Subsidies 
 

Figure 15 provides the system welfare results for flexible services. The welfare in the 

zero subsidy case is 109693$/day, which is identical to the consumer surplus because the profit 

of the zero subsidy case is zero. For flexible services, the zero subsidy case is the break-even 

case. The system welfare of flexible services converges to $113,999/day without exhausting the 

available subsidies.  

Table 11 shows detailed results for flexible services. In Table 11 there is a row with 

“Profit + Subsidy”. When the unit subsidy is $1.8/potential trip, the sum of the profit and the 

subsidy is positive, which means some budget is still available but unused. In the formulation, 

the sum of profit and subsidy is larger or equal to the cost. Therefore, the system does not have 

to use the entire budget. With this leftover amount of subsidies, the system welfare is not 

decreasing after reaching its maximum. Therefore, results confirm that unit subsidies beyond 

about $1.2/potential trip yield no additional social benefits.   
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Figure 15 Total System Welfares of Flexible Services with Subsidies 
 

In the zero subsidy case, 67.7% of the total potential demand yields actual trips. However, 

when the operating cost is fully subsidized, about 81.9% of the potential demand is served. 

Table 11 Results of Flexible Services with Financial Constraints 
Unit Subsidy 

($/trip) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

Fare 1.91 1.59 1.28 1.00 0.73 0.48 0.29 0.03 0.00 0.00 

Revenue 43452.0 37419.1 31146.0 25197.0 18842.8 12755.2 7842.3 789.0 0.0 0.2 

Cost 43452.0 43792.0 44676.0 45492.0 45900.0 46580.0 47600.0 48144.0 48144.0 48144.0 

Profit 0.0 -6372.9 -13530.0 -20295.0 -27057.2 -33824.8 -39757.7 -47355.0 -48144.0 -48143.8 

Subsidy 0.0 6765.0 13530.0 20295.0 27060.0 33825.0 40590.0 47355.0 54120.0 60885.0 

Profit + 
Subsidy 0.0 392.1 0.0 0.0 2.8 0.2 832.3 0.0 5976.0 12741.2 

Consumer 
Surplus 109692.6 117674.1 125490.7 133186.4 140684.4 147646.5 153750.4 161353.5 162143.5 162143.3 

Welfare 109692.6 111301.2 111960.7 112891.4 113627.2 113821.7 113992.6 113998.5 113999.5 113999.5 

Total Actual 
Trips  22774.8 23597.9 24359.6 25102.6 25803.4 26434.1 26977.1 27635.3 27702.9 27702.9 

Total Actual 
Trips 

/ Total 
Potential 

Trips 

67.3% 69.8% 72.0% 74.2% 76.3% 78.1% 79.8% 81.7% 81.9% 81.9% 

 

6. Conclusions   

In this paper, conventional and flexible services are formulated with the demand 

elasticity. The actual ridership is formulated as a linear function using elastic factors of the fare, 
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in-vehicle time, waiting time, and access time. The welfare, which is sum of the consumer 

surplus and the producer surplus, is also formulated for multiple regions as well as multiple time 

periods for conventional and flexible services. Two constrained optimization models are 

analyzed. They have: 1) an objective of the maximum system welfare with the service capacity 

(maximum headway) constraints, and 2) an objective of the maximum system welfare with the 

service capacity and financial constraints, for both conventional and flexible services.  

This study extends the maximization of welfare for conventional and flexible public 

transportation services to multiple regions and multiple periods. Objective functions (i.e., welfare 

functions) are highly nonlinear and decision variables include continuous and integer variables. 

Such nonlinear mixed integer formulations are known to be NP-hard problems, and have no 

proven method for finding their exact optimum solution. Commercial optimization programs 

such as GAMS or LINGO are excluded because they only guarantee a local solution. Thus, a 

genetic algorithm, which is a heuristic search technique, is chosen to solve the formulations 

developed here. 

In numerical examples, the fares, route spacings for conventional services, service areas 

for flexible services, headways and fleet sizes are optimized. The numerical examples show that 

the welfare of conventional services exceeds those of flexible services, with given input values. 

Numerical examples also explore the sensitivity of vehicle sizes and the sensitivity of the 

subsidies with respect to the social welfare for conventional and flexible services. For both 

conventional and flexible services, the actual trips increase as the subsidies increase.  

For conventional services, the problem of one local region with multiple periods has been 

solved in previous studies. For flexible services, a problem with one local region and one period 

has also been solved in the literature. These were all solved with analytic optimization (and with 

approximations).  
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